GalMod

The “Galaxy Model” (GalMod) is a theoretical population synthesis model able to simulate synthetic surveys of the Milky Way, M31, and able to generate initial conditions for quasi-equilibrium collisionless models. Please refer to Pasetto et al. 2016, 2018a,b for a complete description of the model.

P.I. of the project is Pasetto S. (spasetto@carnegiescience.edu). People involved (directly or indirectly) in the realization of this project are: Brogliato C.; Busso, G.; Cassarà, L.; Chiosi, C.; Crnojevic, D.; Fuchs, B.; Grebel, E.; Hunt, J. A. S.; Just, A.; Kawata, D.; Kollmeier, J.; Natale, G.; Piovan, L.; Tantalo, R.; Zeidler P. The realization of this project would not have been possible without the major work carried out over more than three decades by Bertelli, G.; Nasi, Vallenari A.; E.; Bressan, A.; Girardi, L.; Marigo, P. and many others. Web-design and server maintenance by CLOVER-lab (www.clover-lab.com).

Introduction

GalMod assumes the Galaxy to be a discrete superposition of several composite stellar populations (CSPs) representing a few nominal significant stellar populations: the thin disk, the thick disk, the stellar halo and the bulge. GalMod immerses these CSPs in a single dark matter (DM) halo component and a hot coronal gas component (HCG). A parametric model for the modeled galaxy gravitational potential is computed to secure consistency with the density profiles by solving the Poisson equation. These density profiles are used to generate synthetic Hertzsprung-Russell and color-magnitude diagrams (CMDs) in several photometric bands. Finally, the gravitational potential is used to realize the stellar kinematics.

A global model for the Milky Way's gravitational potential is built up to secure consistency with the density profiles by solving the Poisson equation. In turn, these density profiles are used to generate synthetic probability distribution functions (PDFs) for the allocation of stars in the color-magnitude diagrams (CMDs). Finally, the gravitational potential is used to constrain the stellar kinematics using the moment method on phase-space distribution functions.

GalMod contains non-axisymmetric Galactic components such as the spiral arms, bar, and photometric extinction. The realization of the f.o.v has no size limit, even full-sky synthetic surveys are possible.

Usage and tutorial

Please feel free to contact Galaxy.Model@yahoo.com for support, comments or bug report.

For a detailed description of the model please visit our tutorial

Input form

Set the number of stars that GalMod will attempt to realize in the the FoV (see tutorial)
N ∈ {101 .. 106}
The number of stars better representing your model will be automatically determined by GalMod.
Johnson-Cousins photometric system. Set 1 for U, 2 for B, 3 for V, etc.
$1^{st}_\text{fltr}$ ∈ {1..8}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..8}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
Hubble space telescope's Wide Field Camera photometric system. Set 1 for F435W, 2 for F475W etc.
$1^{st}_\text{fltr}$ ∈ {1..12}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..12}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
Hubble space telescope's high-resolution channel photometric system. Set 1 for F220W, 2 for F250W etc.
$1^{st}_\text{fltr}$ ∈ {1..16}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..16}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
Gaia DR2 photometric system. Set 1 for Gbp, 2 for G etc.
$1^{st}_\text{fltr}$ ∈ {1..3}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..3}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
SDSS photometric system. Set 1 for u, 2 for g etc.
$1^{st}_\text{fltr}$ ∈ {1,5}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..5}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
2MASS photometric system. Set 1 for J, 2 for H etc.
$1^{st}_\text{fltr}$ ∈ {1,3}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..3}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
CFHT/MegaCam photometric system. Set 1 for u, 2 for g, 3 for r, etc.
$1^{st}_\text{fltr}$ ∈ {1..5}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..5}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
DECam photometric system. Set 1 for u, 2 for g, 3 for r, etc.
$1^{st}_\text{fltr}$ ∈ {1..6}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..6}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
GALEX photometric system. Set 1 for Fuv, 2 for Nuv
$1^{st}_\text{fltr}$ ∈ {1..2}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..2}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
JWST photometric system. Set 1 for F070W, 2 for F090W, etc.
$1^{st}_\text{fltr}$ ∈ {1..29}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..29}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
LSST photometric system. Set 1 for u, 2 for g, etc.
$1^{st}_\text{fltr}$ ∈ {1..6}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..6}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
PanSTARRS photometric system. Set 1 for g, 2 for r, etc.
$1^{st}_\text{fltr}$ ∈ {1..7}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..7}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
SkyMapper photometric system. Set 1 for u, 2 for v, etc.
$1^{st}_\text{fltr}$ ∈ {1..6}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..6}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
Spitzer photometric system. Set 1 for IRAC3.6, 2 for IRAC4.5, etc.
$1^{st}_\text{fltr}$ ∈ {1..4}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..4}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
Swift photometric system. Set 1 for UVW2, 2 for UVM2, etc.
$1^{st}_\text{fltr}$ ∈ {1..6}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..6}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
UKIDSS photometric system. Set 1 for Z, 2 for Y, etc.
$1^{st}_\text{fltr}$ ∈ {1..5}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..5}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
Washington photometric system. Set 1 for C, 2 for M, etc.
$1^{st}_\text{fltr}$ ∈ {1..4}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..4}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
Stromgren photometric system. Set 1 for u, 2 for v, etc.
$1^{st}_\text{fltr}$ ∈ {1..4}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..4}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
WISE photometric system. Set 1 for W1, 2 for W2, etc.
$1^{st}_\text{fltr}$ ∈ {1..4}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..4}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
Kepler photometric system. Set 1 for Kp, 2 for D51, etc.
$1^{st}_\text{fltr}$ ∈ {1..2}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..2}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
Hipparcos and Tycho photometric system. Set 1 for B, 2 for Hp, etc.
$1^{st}_\text{fltr}$ ∈ {1..3}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..3}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
HST-WFC3 photometric system. Set 1 for UV_F200LPB, 2 for UV_F218W, etc.
$1^{st}_\text{fltr}$ ∈ {1..57}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..57}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
HST-WFC3 photometric system. Set 1 for F218W, 2 for F255W, etc.
$1^{st}_\text{fltr}$ ∈ {1..13}
$\text{mag}_{\min }^{1^{st}_\text{fltr}}$ ∈ [5, 35[ mag
$\text{mag}_{\max }^{1^{st}_\text{fltr}}$ ∈ ]$\text{mag}_{\min }^{1^{st}_\text{fltr}}$, 35] mag
$2^{nd}_\text{fltr}$ ∈ {1..13}$^{th}_\text{fltr}$\{$1^{st}_\text{fltr}$}
colmin ∈ [-2, 5[ mag
colmax ∈ ]colmin, 5] mag
σmag($\text{mag}_{\min }^{1^{st}_\text{fltr}}$) ∈ ]0, 5] mag
σmag($\text{mag}_{\max }^{1^{st}_\text{fltr}}$) ∈ ]σmag($\text{mag}_{\min }^{1^{st}_\text{fltr}}$), 5.00] mag
Zmin ∈ ]0.00001, 0.05] dex
Zmax ∈ ]Zmin, 0.05] dex
FoV angular definition
lmin ∈ [0,360[ deg
lmax ∈ [0,360[ deg
bmin ∈ [-90,90] deg
bmax ∈ ]bmin,90] deg
FoV depth
rhel,min ∈ [0.01,50[ kpc
rhel,max ∈ ]rhel,min, 50] kpc
Proper motion limits
μl,min ∈ [-400,400[ mas/yr
μl,max ∈ ]μl,min,400] mas/yr
μb,min ∈ [-400,400[ mas/yr
μb,max ∈ ]μb,min,400] mas/yr
Radial velocity limits
vr,min ∈ [-400,400[ km/s
vr,max ∈ ]vr,min,400] km/s
FoV angular definition
lcen ∈ [0,360[ deg
bcen ∈ [-90,90] deg
Δl ∈ ]0,360] deg
Δb ∈ ]0,180] deg
FoV depth
rhel,min ∈ [0.01,50[ kpc
rhel,max ∈ ]rhel,min, 50] kpc
Proper motion limits
μl,min ∈ [-400,400[ mas/yr
μl,max ∈ ]μl,min,400] mas/yr
μb,min ∈ [-400,400[ mas/yr
μb,max ∈ ]μb,min,400] mas/yr
Radial velocity limits
vr,min ∈ [-400,400[ km/s
vr,max ∈ ]vr,min,400] km/s
FoV angular definition {RA/dec/O.A.}
αcen ∈ [0,360[ deg
δcen ∈ [-90,90] deg
O.A. ∈ ]0,360] deg
FoV depth
rhel,min ∈ [0.01,50[ kpc
rhel,max ∈ ]rhel,min, 50] kpc
Proper motion limits
μl,min ∈ [-400,400[ mas/yr
μl,max ∈ ]μl,min,400] mas/yr
μb,min ∈ [-400,400[ mas/yr
μb,max ∈ ]μb,min,400] mas/yr
Radial velocity limits
vr,min ∈ [-400,400[ km/s
vr,max ∈ ]vr,min,400] km/s
FoV angular definition {RA/dec,ΔRA,Δdec}
αcen ∈ [0,360[ deg
δcen ∈ [-90,90] deg
Δα ∈ ]0,21600] [arcmin]
Δδ ∈ ]0,10800] [arcmin]
FoV depth
rhel,min ∈ [0,50[ kpc
rhel,max ∈ ]rhel,min, 50] kpc
Proper motion limits
μl,min ∈ [-400,400[ mas/yr
μl,max ∈ ]μl,min,400] mas/yr
μb,min ∈ [-400,400[ mas/yr
μb,max ∈ ]μb,min,400] mas/yr
Radial velocity limits
vr,min ∈ [-400,400[ km/s
vr,max ∈ ]vr,min,400] km/s
FoV angular definition
lmin ∈ ]0,360] deg
lmax ∈ ]0,360] deg
bmin ∈ [-90,90] deg
bmax ∈ ]bmin,90] deg
FoV depth
rhel,min ∈ [0,50] kpc
rhel,max ∈ ]rhel,min, 50] kpc
Proper motion limits
μl,min ∈ [-400,400[ mas/yr
μl,max ∈ ]μl,min,400] mas/yr
μb,min ∈ [-400,400[ mas/yr
μb,max ∈ ]μb,min,400] mas/yr
Radial velocity limits
vr,min ∈ [-400,400[ km/s
vr,max ∈ ]vr,min,400] km/s
FoV angular definition in the galaxy direction
lmin ∈ [0,360[ deg
lmax ∈ ]lmin,360] deg
bmin ∈ [-90,+90] deg
bmax ∈ ]bmin,90] deg
FoV depth toward the galaxy
rhel,min ∈ [0.01,1000.0[ kpc
rhel,max ∈ ]rhel,min, 1000] kpc
Proper motion limits
μl,min ∈ [-400,400[ mas/yr
μl,max ∈ ]μl,min,400] mas/yr
μb,min ∈ [-400,400[ mas/yr
μb,max ∈ ]μb,min,400] mas/yr
Radial velocity limits
vr,min ∈ [-400,400[ km/s
vr,max ∈ ]vr,min,400] km/s
Galaxy phase-space position
xgal xgal ∈ [-900,900]x103 kpc
ygal ygal ∈ [-900,900] kpc
zgal zgal ∈ [-900,900] kpc
μl,gal μl,gal ∈ [-300,300] mas/yr
μb,gal μb,gal ∈ [-300,300] mas/yr
vr,gal vr,gal ∈ [-300,300] km/s
PA: position angle on the celestial sphere
PAgal ∈ ]0,90] deg
i: inclination
igal ∈ ]0,90] deg
Radial solar location R ∈ ]6,9] kpc
Azimuthal solar location φ ∈ [0,360] deg
Vertical solar location z ∈ [-0.1,0.1] kpc
Radial motion to the LSR vR,☉ ∈ [-20,20] km/s
Azimuthal motion to the LSR vφ,☉ ∈ [-20,20] km/s
Vertical motion to the LSR vz,☉ ∈ [-20,20] km/s
Notification
@
We will use your email for notification purpose only. Once the simulation is ready we will send you an email with a link and a password to download the end result.